


which are directed toward the incoming fragment.

A major stabilizing interaction occurs between the HOMO of $Pt(HC_2H)$, mainly metal d_{xz} and the LUMO of $Pt(HC_2H)_2$, the out-of-phase combination of the newly hybridized orbitals. The in-phase combination of these hybrids interact with many of the a' metal orbitals under the low symmetry. The HOMO-LUMO gap produced by such interactions is around 2.5 eV. 34 and 35

of 32 and 33 reinforces the motion of the isolobal relationship between the alkyne and L_2 ligands in their orthogonal orientation.

The portion, $Pt(HC_2H)_2$, has one alkyne prepared for bonding by bending the cis-bent hydrogens away from the approaching $Pt(HC_2H)$. In this way there are carbon hybrid orbitals produced

represent the HOMO and LUMO, respectively, of Pt₂(µ- $HC_2H)(HC_2H)_2$ and illustrate the π and σ interactions of the carbon hydrid orbitals.

Registry No. PtAs₂²⁻, 89088-76-6; Pt(HC₂H)²⁻, 89088-77-7.

Outer-Sphere Electron-Transfer Reactions Involving the Chlorite/Chlorine Dioxide Couple. Activation Barriers for Bent Triatomic Species

David M. Stanbury* and Lynn A. Lednicky[†]

Contribution from the Department of Chemistry, Rice University, Houston, Texas 77251. Received May 31, 1983

Abstract: The kinetics of several redox reactions involving the ClO₂/ClO₂⁻ couple have been determined in aqueous solution by stopped-flow spectrophotometry. ClO₂ is reduced by $[Co(terpy)_2]^{2+}$ to produce ClO_2^- and $[Co(terpy)_2]^{3+}$ with simple bimolecular kinetics ($k = 2.1 \times 10^7 \text{ M}^{-1} \text{ s}^{-1}$ at 25 °C, $\mu = 0.1 \text{ M}$ (NaCF₃SO₃)). ClO₂⁻ is oxidized by ICl_6^{2-} to produce ClO_2 and $IrCl_6^{3-}$; the rate law is -d ln $[IrCl_6^{2-}]/dt = k_1[Cl(III)]/(1 + [H^+]/K_a)$, with $k_1 = 1.06 \times 10^4 \text{ M}^{-1} \text{ s}^{-1}$ and $K_a = 1.6 \times 10^{-2} \text{ M}$, the acid dissociation constant of HClO₂. For the reaction of ClO_2^- with $IrBr_6^{2-}k_1$ is $1.86 \times 10^4 \text{ M}^{-1} \text{ s}^{-1}$. Application of the Marcus-Hush cross relationship to these outer-sphere electron-transfer reactions leads to a self-consistent self-exchange rate constant of 1.6×10^2 M⁻¹ s⁻¹ for the ClO₂/ClO₂⁻ couple. An explicit equation for the classical contributions of molecular vibrations to the activation free energy of self-exchange reactions of bent triatomic species has been derived. Calculations of these barriers show that both bending and stretching are important in the activation process. With this equation the activation barriers for the ClO_2/ClO_2^- , NO_2/NO_2^- , and SO_2/SO_2^- redox couples have been rationalized. Nuclear tunneling introduces a correction to the classical rate constant by a factor of 79 for the NO_2/NO_2^- couple.

Chlorine dioxide is one of the very limited group of main-group molecules which, as free radicals, are reasonably stable in aqueous solution. Its stability confers upon it great advantage in the study of electron-transfer kinetics of small molecules. Thus, its reduction potential is known unequivocally, its geometry has been determined in the gas phase, and its various spectra rank it among the most carefully studied molecules. Its aqueous solutions are photosensitive and decompose rather quickly when alkaline, but when handled properly aqueous chlorine dioxide is a mild and efficient

oxidant, leading to its use in water treatment and fiber bleaching.^{1,2} Notable kinetic and mechanistic studies include its disproportionation,³ its electron exchange with chlorite,⁴ its oxygen exchange with water,⁵ and its oxidations of amines,⁶ iodide,⁷ and sulfite,⁸

⁽¹⁾ Masschelein, W. J. "Chlorine Dioxide"; Ann Arbor Science: Ann

⁽²⁾ Gordon, G.; Kieffer, R. G.; Rosenblatt, D. H. Prog. Inorg. Chem. 1972,

⁽³⁾ Medir, M.; Giralt, F. Water Res. 1982, 16, 1379.

⁽⁴⁾ Dodgen, H.; Taube, H. J. Am. Chem. Soc. 1949, 71, 2501.
(5) Murmann, R. K.; Thompson, R. C. J. Inorg. Nucl. Chem. 1970, 32,

¹⁴⁰⁴

^{*}Robert A. Welch undergraduate scholar.

and it may well be important in chlorite oscillators.⁹ However, as yet no scheme has been developed to predict the rates of its reactions.

The considerable success of Marcus-Hush theory in placing outer-sphere electron-transfer reactions in a predictive context¹⁰ suggests that such reactions of chlorine dioxide may also be correlated. Accordingly, we have embarked on a study of the reductions of chlorine dioxide and the oxidations of chlorite by substitution-inert coordination complexes. Our first study,¹¹ the reduction of ClO_2 by $[Fe(phen)_3]^{2+}$, revealed an important property which has constrained all of the subsequent studies: ClO₂ is such a rapid oxidant that it is difficult to find reactions and conditions which are slow enough to be observed with stopped-flow instrumentation. In this paper results are reported on three observable reactions. The oxidation of $[Co(terpy)_2]^{2+}$ (terpy = 2,2',2''-terpyridine) by ClO₂ is particularly noteworthy in that the cobalt complex is a much stronger reducing agent $(E^{\circ} = 0.27 \text{ V})^{12}$ than $[Fe(phen)_3]^{2+}$ ($E^{\circ} = 1.09 \text{ V}$).¹¹ The other two reactions are oxidations of ClO₂⁻ by IrCl₆²⁻ and IrBr₆²⁻; both IrCl₆²⁻ and IrBr₆²⁻ are weaker oxidants than ClO₂, and so their reactions were studied in the uphill direction, driven to effective completion by mass action.

The results of these studies enable the following questions to be addressed. (A) To what degree can the reactions be correlated by the Marcus-Hush cross relationship? (B) Can the barriers to reaction be understood in terms of molecular and solvent reorganizational contributions? (C) Is the classical model of vibrational activation, which has been found fairly useful for coordination complexes, an appropriate description of the transition state for ClO_2/ClO_2^- reactions? (D) Do these same questions yield similar conclusions for reactions of other bent triatomic molecules?

Experimental Section

Reagents. CoCl₂·6H₂O (Mallinckrodt), 2,2',2''-terpyridine (Sigma), HClO₄ (Baker), and Na₂IrCl₆·6H₂O (Alfa) were used as supplied. Triflic acid (HCF₃SO₃) and sodium triflate (NaCF₃SO₃) were obtained and prepared in the same way as described previously.¹¹ NaClO₄ solutions were prepared by neutralization of HClO₄ with NaCO₃ and subsequent recrystallization. K_2IrBr_6 (Pfalz and Bauer) was purified by Melvin and Haim's procedure¹³ NaClO₂ (MCB, practical flakes) was recrystallized as described by Mellor,¹⁴ followed by dehydration in a vacuum desiccator. Deionized water distilled in a Corning Mega-Pure still was used throughout.

Synthesis of $[Co(terpy)_2](CF_3SO_3)_2$. The literature procedure¹⁵ for the synthesis of $[Co(terpy)_2](ClO_4)_2$ was modified as follows. A solution of 0.1 g of terpyridine in 3 mL of methanol was added to a solution of 0.04 g of CoCl₂·6H₂O in 7 mL of distilled water. The deep red mixture was filtered to remove excess terpy. A saturated aqueous solution of NaC- F_3SO_3 was added dropwise to the filtrate until the first appearance of small crystals. Crystals were grown in a refrigerator for several days before they were collected and washed with toluene and diethyl ether. The crude product was recrystallized by dissolving the crystals in approximately 15 mL of warm (~40 °C) distilled H_2O . The filtered solution was allowed to cool to room temperature. Approximately 0.5 mL of saturated aqueous NaCF₃SO₃ solution was added dropwise. Crystals were grown in a refrigerator over several days with ~ 0.5 mL/day aliquots of saturated NaCF₃SO₃ being added the first 2 days. The red needles were collected, washed with toluene and diethyl ether, and dried in a vacuum desiccator. Anal. Calcd for C₃₂CoF₆H₂₂N₆O₆S₂: C, 46.67; H, 2.69; N, 10.20. Found: C, 46.44; H, 2.84; N, 9.98.

(6) Hull, L. A.; Davis, G. T.; Rosenblatt, D. H.; Mann, C. K. J. Phys. Chem. 1969, 73, 2142.

(7) Fukutomi, H.; Gordon, G. J. Am. Chem. Soc. 1967, 89, 1362.
(8) Suzuki, K.; Gordon, G. Inorg. Chem. 1978, 17, 3115.
(9) Orban, M.; Dateo, C.; De Keper, P.; Epstein, I. R. J. Am. Chem. Soc. 1982, 104, 5911.

(10) Cannon, R. D. "Electron Transfer Reactions"; Butterworths: Boston, 1980.

(11) Lednicky, L. A.; Stanbury, D. M. J. Am. Chem. Soc. 1983, 105, 3098.
 (12) (a) Chen, Y.-W. D.; Santhanam, K. S. V.; Bard, A. J. J. Electrochem.

- Soc. 1982, 129, 61. (b) Cummins, D.; Gray, H. B. J. Am. Chem. Soc. 1977, 99, 5158.
- (13) Melvin, W. S.; Haim, A. Inorg. Chem. 1977, 16, 2016.
 (14) Mellor, J. W. "Inorganic and Theoretical Chemistry"; Longmans, Green, and Co: London, 1956; Supplement II, Part I, p 570.
- (15) Baker, B. R.; Basolo, F.; Neumann, H. M. J. Am. Chem. Soc. 1959, 63. 371.

Instrumentation and Precautions. Solution pH was determined on a Corning 130 pH meter with a glass electrode and a SCE reference electrode filled with 3.5 M NaCl. Spectra were recorded on a Cary 210 UV/vis spectrophotometer with quartz cuvettes and on a Beckman 4250 IR spectrophotometer with KBr pellets. Kinetics were recorded on the Amino-Morrow stopped-flow as described previously;¹¹ it was thermostated by a Lauda K-2/R refrigerated circulating water bath, with a water/ethylene glycol circulating fluid. The chamber surrounding the mixing cell was purged with dry N2 to minimize atmospheric condensation. The temperature at the cell was monitored with a thermistor by using a Digitec digital thermometer. The photometric signal from the RC filter was digitized, recorded, and processed on an OLIS 3820 data acquisition system. Although this system permitted signal averaging of several shots, it was found that this procedure was inadvisable; slight irreproducibility in the time delay between triggering and the stop of the flow resulted in distortion of the initial data for reactions having half-lives less than 15 ms.

Chlorine dioxide stock solutions were prepared as described previously¹¹ and were protected from light and stored in a refrigerator. These solutions were generally stable for about 3 weeks. All [Co(terpy)2]²⁺ solutions were prepared immediately before use to ensure that no air oxidation occurred. A cursory investigation of the oxidation of [Co- $(terpy)_2|^{2+}$ by O₂ was carried out by preparing a solution in air-saturated water with $[Co(terpy)_2^{2^+}]_0 = 1.0 \times 10^{-4} \text{ M}$; a portion of the solution was saturated with O_2 ($[O_2]_0 = 1.2 \times 10^{-3}$ M at 1 atm O_2).¹⁶ Over a period of 17 h at \sim 22 °C the absorbance at 505 nm decreased by 20% for the oxygenated solution, while only a 4% decrease was observed in the airsaturated solution. With the assumption of pseudo-first-order kinetics and Henry's law for the solubility of O_2 (air being 20.98% O_2),¹⁷ the initial rates gave a second-order rate constant of $k = 3.1 \times 10^{-3} \text{ M}^{-1} \text{ s}^{-1}$. This reaction presented no interference with the rapid oxidation of $[Co(terpy)_2]^{2+}$ by ClO_2 .

All solutions were permitted to contact only glass, platinum, and Teflon. Solutions of lrCl₆²⁻ and IrBr₆²⁻ were protected from light and were used within 1 h of preparation to minimize the effects of hydrolysis.

Analytical Methods. Solutions of HCF3SO3 and HClO4 were standardized by titration against 0.1 N NaOH to a phenolphthalein end point. NaClO₄ stock solution was standardized by evaporation at 110 °C and weighing the anhydrous NaClO₄ residue. NaCF₃SO₃ stock solution was standardized by passing an aliquot down a cation-exchange column in the acid form (Dowex 50W-X8) and titrating the eluent with 0.1 N NaOH.

NaClO₂ stock solutions were prepared daily, protected from light, and

standardized iodometrically by the method of Brown.¹⁸ Solutions of [Co(terpy)₂]²⁺ were determined spectrophotometrically. The extinction coefficient at 505 nm was found to be 1404 M⁻¹ cm⁻¹ $([Co(terpy)_2]^{2+} = 1.70 \times 10^{-4} \text{ M})$. This value agrees with previously reported values.¹⁹ At 316 nm the extinction coefficient was found to be 3.34×10^4 M⁻¹ cm⁻¹ (not a local maximum). The C, H, and N analysis was performed by Galbraith Labs (Knoxville, TN).

ClO₂ concentrations were determined spectrophotometrically (ϵ = 1200 M⁻¹ cm⁻¹ at 358 nm or 529 M⁻¹ cm⁻¹ at 316 nm). Contrary to Masschelein,²⁰ we found that ClO_2 could not reliably be determined iodometrically at neutral pH. An aliquot of freshly prepared ClO₂ solution (~ 0.02 M) was added to an equal volume of phosphate buffer $(\sim 0.02 \text{ M})$ at pH 7, 1 g of KI was added, and the solution was titrated with 0.1 N Na₂S₂O₃ to a starch end point. This method led to molar absorptivities $\sim 10\%$ too low. Furthermore, with a 1.2-fold excess of NaClO₂ added to the ClO₂ solution, an additional 20% of $S_2O_3^{2-}$ was required to reach the end point. It is concluded that ClO₂⁻ is oxidized by I⁻ even at pH 7; this conclusion is strengthened by the observation that I_2 catalyzes the reaction of 1⁻ with ClO₂^{-.21}

Determination of Stoichiometry. A solution of 5.41×10^{-5} M [Co-(terpy)₂]²⁺ was prepared, and 2.8 mL was transferred to a 1-cm rectangular quartz cuvette. The absorbance was measured at 505 and 336 nm. To the solution in the cuvette was added $0.2 \text{ mL of } ClO_2$ ([ClO₂] > 0.01 M), excess ClO_2 then being removed by sparging with Ar. The absorbance was then determined at 336 nm, a local maximum for [Co-

(20) Reference 1, p 91.
(21) Kern, D. M.; Kim, C.-H. J. Am. Chem. Soc. 1965, 87, 5309.

⁽¹⁶⁾ Seidell, A.; Linke, W. F. "Solubilities of Inorganic Compounds", 4th

ed.; Van Nostrand: Princeton, NJ, 1964; p 1228. (17) "The Merck Index", 8th ed.; Merck and Co.: Rahway, NJ, 1968; p 109. Note Added in Proof: The rate of reaction of O_2^- with Co(terpy)₂³⁺ has recently been reported: Bradic, Z.; Wilkins, R. G. J. Am. Chem. Soc., in press. The ratio of the rate constant for the O_2 reaction with Co(II) and the O_2 reaction with Co(III) is equal to the equilibrium constant as determined from the redox potentials.

⁽¹⁸⁾ Brown, E. G. Anal. Chim. Acta 1952, 7, 494. (19) Prasad, J.; Peterson, N. C. Inorg. Chem. 1969, 8, 1622.

Outer-Sphere Electron-Transfer Reactions

 $(\text{terpy})_2]^{3+}$ ($\epsilon = 2.10 \times 10^4 \text{ M}^{-1} \text{ cm}^{-1}$),²² the contribution from ClO₂ being negligible. It was found that $99.2 \pm 0.8\%$ of the $[Co(terpy)_2]^2$ was oxidized to [Co(terpy)2]3+. A similar experiment was performed by oxidizing $[Co(terpy)_2]^{2+}$ with Cl_2 in acid medium, then expelling any dissolved Cl₂ with Ar. The spectra of the product $[Co(terpy)_2]^{3+}$ were identical in both methods of oxidation.

A spectrophotometric titration was performed twice by preparing 50-cm³ solutions of $[Co(terpy)_2]^{2+}$ (1.23 × 10⁻⁵ and 3.93 × 10⁻⁶ mol) and titrating with 1-cm³ aliquots of ClO₂ solutions (1.04 × 10⁻³ and 1.11 × 10⁻³ M). The change in absorbance was measured at 505 nm in a 1-cm

cell. The end point was taken as the break in a plot of A vs. volume. For the reaction of ClO_2^- with $IrCl_6^{2-}$, $IrCl_6^{3-}$ was verified as the product as follows. A solution containing 2×10^{-3} M NaClO₂, 2×10^{-5} M IrCl₆²⁻, and 0.2 M NaClO₄ was allowed to react. The solution was then acidified with 0.2 M HClO₄ and saturated with Cl_2 . After the brown color characteristic of lrCl₆²⁻ returned, excess Cl₂ was sparged from the solution by a stream of Ar. Spectrophotometric analysis of the resulting solution showed quantitative recovery of $1rCl_6^{2-}$ by its absorption at 487 nm, $\epsilon = 4000 \text{ M}^{-1} \text{ cm}^{-1}.^{23}$

The yield of ClO₂ from oxidation of ClO₂⁻ by IrCl₆²⁻ was also determined spectrophotometrically. A solution of 2×10^{-3} M NaClO₂, 0.1 M NaClO₄, and 2×10^{-5} M lrCl₆²⁻ at pH 5 was prepared and allowed to react. Measuring the absorbance at 360 nm gave a yield of 0.94 ± 0.05 mol of ClO₂ per mol of $1rCl_6^{2-}$ consumed.

Kinetics Methods. The reactions were initiated by mixing equal volumes of solutions in the stopped-flow. Both solutions were maintained at $\mu = 0.1$ M with background electrolyte, NaCF₃SO₃ for the Co(II) reactions and NaClO₄ for the lr(1V) reactions. In cases where the pH was deliberately controlled, NaOH, HClO₄, or HCF₃SO₃ was added to the solution containing the metal complex. For the Co(II) reactions, the data were manipulated on the OLIS 3820 to obtain a plot of eq 4 as the In term vs. time. These plots were generally linear for 2 or 3 half-lives, and the rate constants were obtained from the slopes. For the Ir(IV) reactions the absorbance was monitored at the peak maximum, 487 nm for the $IrCl_6^{2-}$ and 588 nm for $IrBr_6^{2-}$; semilog plots were also linear for 3 half-lives, but values of k_{obsd} were determined by computer fitting the data to an exponential decay.

Results

Stoichiometry. The reaction of $[Co(terpy)_2]^{2+}$ with ClO_2 quantitatively yields [Co(terpy)₂]³⁺. Spectrophotometric titrations demonstrate a consumption ratio of 1 mol of [Co(terpy)₂]²⁺ per mol of ClO₂. Chlorite, the other assumed product, was not directly observed owing to its weak UV absorbance; however, since it is stable in solutions which are not too acidic²⁴ it is reasonable to write the stoichiometry as

$$[\operatorname{Co}(\operatorname{terpy})_2]^{2+} + \operatorname{ClO}_2 \rightarrow [\operatorname{Co}(\operatorname{terpy})_2]^{3+} + \operatorname{ClO}_2^{-} \quad (1)$$

IrCl₆³⁻ was determined to be the product of oxidation of ClO₂⁻ with $IrCl_6^{2-}$ by observing quantitative recovery of $IrCl_6^{2-}$ after oxidation with Cl₂. As determined by its UV absorption, ClO₂ was formed in this reaction in 94% yield. The stoichiometry for this reaction is just the inverse of reaction 1.

$$IrCl_6^{2-} + ClO_2^{-} \rightarrow IrCl_6^{3-} + ClO_2$$
(2)

The stoichiometry of the oxidation of ClO_2^- by $IrBr_6^{2-}$ was not investigated, but by analogy it must be

$$\mathrm{IrBr_6^{2-} + ClO_2^{-} \rightarrow IrBr_6^{3-} + ClO_2}$$
(3)

 ClO_2 is so much more strongly oxidizing $(E^\circ = 0.936 \text{ V})^{25}$ than $[Co(terpy)_2]^{3+}$ $(E^\circ = 0.27 \text{ V})^{12}$ that the equilibrium in eq 1 is wholly to the right under all accessible conditions. $IrCl_6^{2-}$ (E° = $(0.892 \text{ V})^{26}$ and IrBr_{6}^{2-} ($E^{\circ} = (0.843 \text{ V})^{27}$ are actually weaker oxidants than ClO₂, and so reactions 2 and 3 were studied with sufficient excess ClO_2^- to force the equilibria to at least 95% completion.

(22) Farina, R.; Wilkins, R. G. Inorg. Chem. 1968, 7, 514

- (23) Wilmarth, W. K.; Stanbury, D. M.; Byrd, J. E.; Po, H. N.; Chua, C.-P. Coord. Chem. Rev. 1983, 51, 155.
- (24) (a) Kieffer, R. G.; Gordon, G. Inorg. Chem. 1968, 7, 239. (b) Hong,
 C. C.; Rapson, W. H. Can. J. Chem. 1968, 46, 2053.
 (25) Troitskaya, N. V.; Mischchenko, K. P.; Flis, I. E. Russ. J. Phys. Chem. 1959, 33, 77.

Table 1. Kinetics Data for ClO₂ Reaction with $[Co(terpy)_2]^{2+\alpha}$

i i i i i i i i i i i i i i i i i i i	una 101 010 ₂ 10			0(((1)))2]
$\begin{bmatrix} Co(terpy)_2^{2+} \end{bmatrix}, \\ M$	[ClO ₂], M	pН	<i>Т</i> . °С	$k \times 10^{-7}$. M ⁻¹ s ⁻¹
7.19×10^{-5}	7.50×10^{-5}	4.24	10.0	1.77 ± 0.40
9.51×10^{-5} 9.44×10^{-5}	1.36×10^{-4} 6.04×10^{-5}	4.90 4.90	$\begin{array}{c} 10.0 \\ 10.0 \end{array}$	1.19 ± 0.39 1.34 ± 0.69
3.70×10^{-5} 3.63×10^{-5}	2.81×10^{-5} 4.13×10^{-5}	3.78	10.0	1.90 ± 0.76
1.05×10^{-4}	4.13×10^{-4} 1.26×10^{-4}	3.78 6.50	$10.0\\10.0$	2.06 ± 0.60 1.11 ± 0.25
8.94 × 10 ⁻⁵ 8.76 × 10 ⁻⁵	1.23×10^{-4} 1.04×10^{-4}	2.45 3.67	$\begin{array}{c} 10.0 \\ 10.0 \end{array}$	1.10 ± 0.88 1.50 ± 0.32
2.81×10^{-5}	5.38×10^{-5}	3.67	10.0	1.50 ± 0.32 1.60 ± 0.37
6.80×10^{-5} 6.70×10^{-5}	7.74×10^{-5} 1.33×10^{-4}	3.76 3.71	$\begin{array}{c} 10.0 \\ 10.0 \end{array}$	1.20 ± 0.32 1.55 ± 0.30
$1.53 \times 10^{-4} b$	1.53×10^{-4}	3.77	5.0	2.28 ± 0.03
$1.34 \times 10^{-4} b,c$ $1.32 \times 10^{-4} b,d$	1.34×10^{-4} 1.32×10^{-4}	3.72 2.53	5.0 10.0	2.08 ± 1.0 3.18 ± 0.5
8.26 × 10 ⁻⁵ e	1.04×10^{-4}	3.67	10.0	1.50 ± 0.14
8.33 × 10 ⁻⁵ e 8.33 × 10 ⁻⁵ e	1.08×10^{-4} 1.04×10^{-4}	3.78 3.67	$15.0 \\ 20.0$	1.54 ± 0.26 1.94 ± 0.26
$8.19 \times 10^{-5} e$	9.87×10^{-5}	3.68	25.0	2.38 ± 0.32
7.98 × 10 ⁻⁵ e	9.36 × 10 ⁻⁵	3.68	30.0	2.35 ± 0.46

 $a \mu = 0.1$ M (NaCF₃SO₃); $\lambda = 316$ nm; eq 4 used to evaluate k; k values were obtained as averages of five shots, and uncertainties were the standard deviations for the shots. $b \lambda = 505 \text{ nm}; \text{eq 5}$ used to evaluate k. ^c Added [Co(H₂O)₆²⁺] = 8.8 × 10⁻⁵ M. ^d Added [terpy] = 1.2 × 10⁻³ M. ^e Used to determine the activation parameters.

Kinetics. The reaction of ClO_2 with $[Co(terpy)_2]^{2+}$ was found to be extremely fast. Initial experiments were performed by monitoring the substantial absorption band of Co(II) in the visible region. In order for the reaction to be detectable with our apparatus it was necessary to work with very dilute solutions, and conditions of pseudo-first-order kinetics could not be attained. Some advantage was gained by working mostly at 10 °C. However, data of reasonable S/N were not achieved until experiments were performed in the UV; the absorbance changes in the UV were about a factor of 20 greater than in the visible.

Semilog plots of the kinetics data were not linear, nor were simple second-order plots. On the assumption that the kinetics were mixed second order, eq 4 was deemed appropriate.²⁸

$$\ln\left(1 + \frac{\Delta_0}{[A]_0}\frac{\Delta Abs_0}{\Delta Abs_t}\right) = \Delta_0 kt + \ln\frac{[B]_0}{[A]_0}$$
(4)

In this equation A is the limiting reagent, $\Delta_0 = [B]_0 - [A]_0$, ΔAbs_0 is the overall absorbance change, ΔAbs_t is the difference between the absorbance at time t and at "infinite" time, and kis the second-order rate constant. Rate constants obtained from eq 4 are listed in Table I. This method of determining rate constants is quite imprecise, because small errors in the molar absorptivities of the reactants lead to large errors in Δ_0 ; hence, there is considerable scatter in the reported rate constants. Some of the earlier experiments, run in the visible under conditions of equal reactant concentrations, were analyzed with eq 5.28

$$\Delta Abs_0 / \Delta Abs_t = k[A]_0 t + 1$$
⁽⁵⁾

Rate constants so obtained, although even less precise than those obtained by using eq 4, are also listed in Table I. These results demonstrate that the second-order rate constants are independent of pH, added terpy ligand, and added $[Co(H_2O)_6]^{2+}$. Clear first-order dependences on $[ClO_2]$ and $[Co(terpy)_2]^{2+}$ are demonstrated. The rate law for the reaction is

$$-d[Co(terpy)_{2}^{2^{+}}]/dt = k[Co(terpy)_{2}^{2^{+}}][ClO_{2}]$$
(6)

The Eyring equation

$$k(T) = \frac{RT}{Nh} \exp\left(\frac{-\Delta H^*}{RT} + \frac{\Delta S^*}{R}\right)$$
(7)

⁽²⁶⁾ Margerum, D. W.; Chellappa, K. L.; Bossu, F. P.; Burce, G. L. J. Am.

Chem. Soc. 1975, 97, 6894. (27) Stanbury, D. M.; Wilmarth, W. K.; Khalaf, S.; Po, H. N.; Byrd, J.

E. Inorg. Chem. 1980, 19, 2715.

⁽²⁸⁾ Espenson, J. A. "Chemical Kinetics and Reaction Mechanisms"; McGraw-Hill: New York, 1981; pp 19-24.

Table II. Kinetics Data for ClO_2^{-} Reaction with $lrCl_6^{2-a}$

[ClO ₂ ⁻], M	pН	$k_{\substack{\text{obsd}\\s^{-1}}},$	[ClO ₂ ⁻], M	рH	$k_{\substack{\text{obsd}\\s^{-1}}}$,
$\begin{array}{c} 7.35 \times 10^{-3} \\ 5.00 \times 10^{-3} b \\ 2.00 \times 10^{-3} b \\ 1.00 \times 10^{-3} b \\ 5.00 \times 10^{-4} b \end{array}$	3.98 3.86 2.42 1.69 1.38 4.0 4.0 4.0 4.0	72.7 77.1 63.1 34.3 21.6 55.5 23.7 11.3 6.0	$\begin{array}{c} 3.84 \times 10^{-3} \\ 5.67 \times 10^{-3} \\ 6.72 \times 10^{-3} \\ 5.75 \times 10^{-3} \\ 6.70 \times 10^{-3} \\ 7.66 \times 10^{-3} \\ 8.62 \times 10^{-3} \\ 8.62 \times 10^{-3} \\ 8.62 \times 10^{-3} \\ c \end{array}$	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 1.36 4.0	40.7 55.3 69.5 60.5 63.5 86.5 96.1 25.0 92.2
2.88×10^{-3}	4.0	32.6	5.76 × 10 ⁻³ d	6.2	58.0

 ${}^{a} \mu = 0.10 \text{ M} (\text{NaClO}_{4}), T = 25 \text{ °C}, [\text{IrCl}_{6}^{2^{-}}]_{0} = 2.0 \times 10^{-5} \text{ M}.$ ${}^{b} [\text{IrCl}_{6}^{2^{-}}]_{0} = 1.0 \times 10^{-5} \text{ M}.$ ${}^{c} \text{ Added } [\text{Cu}^{2^{+}}] = 1.0 \times 10^{-5} \text{ M}.$ ^d Used purified lrCl₆²⁻ as described in text.

Table III. Kinetics Data for $\ln Br_6^{2-}$ Reaction with ClO_2^{-a}

$[ClO_2^-], M pH k_{obsd}, s^{-1} [ClO_2^-], M pH k_{obsd},$	e=1
$[CiO_2]$, a pir robsd, s $[CiO_2]$, m pir robsd,	<u>э</u> _
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10^{1} 10^{1} 10^{1} 10^{1} 10^{1}

^{*a*} $\mu = 0.10$ M (NaClO₄), T = 25.0 °C, $[IrBr_6^{2-}]_0 = 2 \times 10^{-5}$ M. ^b $[1rBr_6^{2-}]_0 = 1 \times 10^{-5} M.$

was used to obtain activation parameters by fitting the temperature-dependent rate constants with a nonlinear least-squares computer routine, each point being equally weighted. This led to $\Delta H^* = 16.2 \pm 3.8 \text{ kJ mol}^{-1}$ and $\Delta S^* = -50 \pm 13 \text{ J K}^{-1} \text{ mol}^{-1}$, and a rate constant at 25.0 °C of (2.1 \pm 0.4) \times 10⁷ M⁻¹ s⁻¹.

The reaction of $IrCl_6^{2-}$ with ClO_2^{-} was studied at 25.0 °C, with a large excess of ClO_2^{-} . Values of the pseudo-first-order rate constants, k_{obsd} , are listed in Table II. A first-order dependence on $[ClO_2^-]$ is obeyed in weakly acidic media. In more strongly acidic media at fixed total [Cl(III)] the rates are inhibited. The data are consistent with the rate law

$$\frac{-d[IrCl_6^{2-}]}{dt} = \frac{k[IrCl_6^{2-}][Cl(III)]}{1 + [H^+]/K_a}$$
(8)

and a nonlinear least-squares fit gives $k = (1.06 \pm 0.02) \times 10^4$ $M^{-1} s^{-1}$ and $K_a = (1.62 \pm 0.13) \times 10^{-2} M$. This may be compared with the literature value for K_a of 1.7×10^{-2} M.^{24b} One entry in Table II demonstrates that purifying the commercial Na₂Ir-Cl6.6H2O by boiling for several hours in concentrated HCl²⁹ does not significantly affect the results.³⁰

 $IrBr_6^{2-}$ was reduced by ClO_2^{-} as well with a large excess of ClO_2 . Table III presents the pseudo-first-order rate constants. A good first-order dependence on $[ClO_2^-]$ was found. The pH dependence was studied only in the region far from the pK_a of $HClO_2$, and the conclusion is that in this region there is no pH dependence. The observed rate law

$$-d[IrBr_6^{2-}]/dt = k[IrBr_6^{2-}][ClO_2^{-}]$$
(9)

is thus analogous to rate law 8 under conditions of high pH. A least-squares fit of eq 9 gives $k = (1.86 \pm 0.05) \times 10^4 \text{ M}^{-1} \text{ s}^{-1}$.

$$\frac{-d[IrCl_6^{2-}]}{dt} = \frac{[IrCl_6^{2-}][Cl(III)](k_1K_a + k_2[H^+])}{(K_a + [H^+])}$$

The resulting least-squares parameters were $k_1 \approx (1.06 \pm 0.02) \times 10^4 \text{ M}^{-1} \text{ s}^{-1}$, $k_2 = (0.05 \pm 1.02) \times 10^3 \text{ M}^{-1} \text{ s}^{-1}$, and $K_a = (1.60 \pm 0.51) \times 10^{-2} \text{ M}$. The large standard deviation for k_2 indicates that this parameter is not defined by the data, and it suggests an upper limit to k_2 of 1.0×10^3 M⁻¹ s⁻¹, i.e., an order of magnitude less than k_1 .

Discussion

Cross Relationship. The three reactions investigated in this study and the previously studied reaction of ClO₂ with [Fe-(phen)₃]²⁺ have stoichiometries and rate laws which are consistent with the following general mechanism

$$\operatorname{ClO}_2$$
 + red \rightleftharpoons ClO_2^- + Ox k_1, k_{-1} (10)

$$\mathrm{HClO}_2 \rightleftharpoons \mathrm{H}^+ + \mathrm{ClO}_2^- \qquad K_{\mathrm{a}} \qquad (11)$$

Thus when the reducing agent is $[Co(terpy)_2]^{2+}$, the secondorder rate constant is k_1 , but when the oxidizing agent is $IrCl_6^{2-1}$ or $\mathrm{IrBr_6^{2-}}$ the second-order rate constant is k_{-1} . The ratio k_1/k_{-1} for a given system is, by the principle of detailed balancing, equivalent to the equilibrium constant, which is, in turn, defined by the known relevant redox potentials. Table IV collects these results. Although many of the rate constants are very large, none approach the limits of diffusion control within an order of magnitude. Casual inspection reveals two interesting phenomena. The reactions of ClO_2 with $[Fe(phen)_3]^{2+}$ and $[Co(terpy)_2]^{2+}$ differ in their equilibrium constants by 14 orders of magnitude, yet their rate constants differ by only 3 orders of magnitude. Of the reactions of ClO_2^- with $IrCl_6^{2-}$ and $IrBr_6^{2-}$ that of $IrCl_6^{2-}$ is thermodynamically more favored, but its rate constant is actually less

The reactions in question proceed without substitution in the octahedral coordination sphere of the transition-metal ions. No evidence was obtained for formation of significant amounts of intermediate species. Furthermore, several reactions of the ClO_2/ClO_2^- couple have been shown to proceed without exchange of oxygen with the solvent water.³³ These observations suggest that the reactions are formally of the outer-sphere type, but they do not rule out a substantial degree of strong overlap.

The cross relationship of Marcus–Hush theory, given in eq 12,³⁴ is useful in rationalizing rate/equilibrium ratios for outer-sphere electron-transfer reactions.¹⁰ Equation 12 is the usual cross

$$k_{11} = \left(\frac{k_{12}}{W_{12}}\right)^2 \frac{1}{k_{22}K_{12}f_{12}};$$

$$W_{12} = \exp\left(\frac{-(w_{12} + w_{21} - w_{11} - w_{22})}{2RT}\right)$$

$$\ln (f_{12}) = \frac{\left(\ln (K_{12}) + \frac{w_{12} - w_{21}}{RT}\right)^2}{4\left\{\ln \left(\frac{k_{11}k_{22}}{Z^2} + \frac{w_{11} + w_{22}}{RT}\right)\right\};$$

$$w_{ab} = \frac{4.23 \times 10^{-8} Z_A Z_B}{a(1 + 3.28 \times 10^7 a(\mu^{1/2}))} (12)$$

relationship, with work terms, w_{ab} , explicitly included, and it has been reorganized to yield k_{11} , the self-exchange rate constant for the ClO_2/ClO_2^- couple. In this equation k_{22} is the self-exchange rate constant for the transition-metal complex redox couple, k_{12} is the observed second-order rate constant, K_{12} is the equilibrium constant, Z is the collision rate, taken to be 10^{11} M⁻¹ s⁻¹, Z_a and Z_b are the ionic charges of the relevant species, and a is the center-to-center distance in the transition state, taken as the sum of the ionic or van der Waals radii. Since f_{12} itself is expressed in terms of k_{11} , values of k_{11} were determined for each reaction by an iterative procedure. Table IV lists the results of these calculations. The calculated values for k_{11} have a geometric mean

⁽²⁹⁾ Poulsen, I.; Garner, C. G. J. Am. Chem. Soc. 1962, 84, 2032. (30) One other rate law was also tried as a fit to the data

⁽³¹⁾ Ruff, I.; Zimonyi, M. Electrochim. Acta 1973, 18, 515.

 ⁽³²⁾ Hurwitz, P.; Kustin, K. Trans. Faraday Soc. 1966, 62, 427.
 (33) Halperin, J.; Taube, H. J. Am. Chem. Soc. 1952, 74, 375.

⁽³⁴⁾ Haim, A.; personal communication, 1980. In some earlier publications, ref 11 and 23, w_{ab} was indivertently used with an incorrect denominator. This correction revises k_{11} for the Fe(phen)₂²⁺ + ClO₂ reaction from 6.1 × 10¹ to 1.0 × 10² M⁻¹ s⁻¹, and k_{11} for the NO₂/NO₂⁻ couple is revised from 1×10^{-2} to 8.1 × 10⁻³ M⁻¹ s⁻¹.

Table IV. Marcus-Hush Cross Relationship for Reactions of ClO₂/ClO₂^{-a}

reagent	E° , V	k ₂₂ , M ⁻¹ s ⁻¹	K_{eq}	k_1 , M^{-1} s ⁻¹	r_2, j A	<i>k</i> ₋₁ , M ⁻¹ s ⁻¹	$k_{11}, M^{-1} s^{-1}$ (calcd)
[Co(terpy) ₂] ²⁺	0.27 ^b	48'	1.82×10^{11}	2.1 × 107	6	1.2×10^{-4}	2.4×10^{2}
$[1/c(phen)_3]^{2+}$ $lrCl_6^{2-}$	1.09^{c} 0.892^{d}	$5 \times 10^{8} \frac{g}{2} \times 10^{5} h$	1.98×10^{-3} 5.55	4.5×10^{4} 5.88×10^{4}	6 4.4	2.27 ×10 ⁷ 1.06 ×10⁴	1.0×10^{2} 1.1×10^{3}
lrBr ₆ ²⁻	0.843°	2×10^{8} ⁱ	3.73×10^{1}	6.94 × 10 ⁵	4.7	1.86×10^{4}	2.7×10^{1}

 $a_{\mu} = 0.1; r_i = 1.5$ A assumed for $\text{CIO}_2^{-7}/\text{CIO}_2; k_{11}$ calculated with use of eq $12; k_1, k_{-1}$ as defined in eq 10 and 11, using $E^\circ = 0.936$ V.²⁵ k_{22} is the self-exchange for the metal complex. ^b Reference 12. ^c Reference 11. ^d Reference 26. ^e Reference 27. ^f Reference 22. ^g Reference 31. ^h Reference 32. ⁱ Reference 27. ^j Estimated.

of $1.6 \times 10^2 \text{ M}^{-1} \text{ s}^{-1}$. Of these the result for $[\text{Co}(\text{terpy})_2]^{2+}$ is most dubious because its self-exchange rate was measured at very low ionic strength at 0 °C; a more appropriate value would have the effect of reducing k_{11} . We have used eq 12 to calculate k_{11} because its value is unknown; in its usual form the cross relationship calculates k_{12} , which is proportional to $k_{11}^{1/2}$. Thus the spread of a factor of 41 in k_{11} is equivalent to a spread of a factor of 6 in a more conventional treatment. Considering the uncertainties and the range of oxidants and ΔG° covered in Table IV, the spread in k_{11} is large but acceptable, and it is consistent with an outer-sphere mechanism.

Direct measurement of k_{11} was attempted by Dodgen and Taube using isotope-exchange methods;4 their data suggest a lower limit to k_{11} of 4×10^2 M⁻¹ s⁻¹. The actual isotope-exchange rate constant may be much greater, and if so, it could be interpreted as involving a strong overlap mechanism. At this point, however, the data are consistent with a weak-overlap (outer-sphere) mechanism both for the four cross reactions and for the actual self-exchange.

How generally do triatomic molecules participate in singleelectron transfer reactions which can be treated consistently with the cross relationship? The NO_2^{-}/NO_2 couple is one other example where the cross relationship appears to be appropriate, and an effective self-exchange rate constant of $8.1 \times 10^{-3} \text{ M}^{-1} \text{ s}^{-1}$ has been derived.^{23,34} There are fewer data for the SO₂⁻/SO₂ couple, but it, too, appears to react consistently with the cross relationship.³⁵ Unfortunately, the investigators of the SO_2^-/SO_2 system inappropriately used E° for the SO_2^-/HSO_3^- couple when applying the cross relationship.³⁶ The reactions were oxidations of $S_2O_4^{2-}$ by $Co(EDTA)^{-}$ and $Co(C_2O_4)_3^{3-}$. The rate laws were first order in [Co(III)] and half order in $[S_2O_4^{2-}]$, thus implying a preequilibrium homolysis of $S_2O_4^{2-}$ followed by rate-limiting reactions of SO₂⁻. Since the rate laws apparently were zero order in [OH⁻], hydrolysis of SO₂ to HSO₃⁻ must have occurred in a subsequent step. $\Delta G_{\rm f}^{\,\circ}$ for $SO_2^{\,-}$ (= -65.7 kcal) can be obtained by using $\Delta G_{\rm f}^{\,\circ}$ for $S_2O_4^{\,2-37}$ and $K_{\rm h}$, the homolysis constant for $S_2O_4^{\,2-.38}$

$$S_2O_4^{2-}(aq) \rightleftharpoons 2SO_2^{-}(aq) \qquad K_h$$
 (13)

The appropriate E° (=-0.262 V) defined as

$$SO_2(aq) + \frac{1}{2}H_2 \Rightarrow SO_2(aq) + H^+(aq) = E^{\circ}$$
 (14)

is then obtained from the difference of ΔG_f° for SO₂(aq)³⁷ and $SO_2^{-}(aq)$. The corrected effective self-exchange rate constant is 3.4 × 10^2 M⁻¹ s⁻¹, rather than 1 × 10^{-3} M⁻¹ s⁻¹ as previously reported. These three cases, then, support the applicability of the cross relationship to reactions of triatomic molecules.

However, the SCN⁻/SCN redox couple is not effectively treated by using the cross relationship because its reactions are diffusion controlled.²⁷ Similar arguments, although less compelling, have been advanced regarding the N_3^-/N_3 couple.²³ Although numerous kinetic data are available for the \dot{CO}_2/\dot{CO}_2 couple,³⁹ its E° is not sufficiently accurately known⁴⁰ to test the cross relationship. Data for the BrO_2/BrO_2^- couple are extremely limited,⁴¹ and do not as yet bear on the issue. In summary, the cross relationship appears to apply to some, but not to all, triatomic redox couples.

Classical Model. The conventional "classical" model of Marcus-Hush theory gives the activation barrier for a self-exchange reaction as ΔG^* in

$$k = Z \exp\left(\frac{-\Delta G^*}{RT}\right) \tag{15}$$

The form of Z has been the subject of some discussion, but it is probably not too bad an approximation to assign it a value of 10^{11} $M^{-1}\,s^{-1}$ at 25 °C in water. 42 There has also been some discussion of whether a preexponential factor κ , reflecting the degree of nonadiabaticity, should be present.⁴³ However, the concern with these reactions is not that they may be nonadiabatic, but that they may involve strong overlap. In the rest of this paper eq 15 will be assumed to be appropriate. It is further conventional to express ΔG^* as

$$\Delta G^* = w + \Delta G_0^* + \Delta G_i^* \tag{16}$$

Since ClO_2 is not ionic, the work term, w, is close to zero, leaving ΔG^* the sum of ΔG_0^* , the solvent reorganizational barrier, and ΔG_i^* , the molecular reorganizational barrier.

In the classical model, ΔG_0^* derived under the assumption of a dielectric continuum is given by⁴⁴

$$\Delta G_0^* = \frac{(\Delta Z)^2 e^2}{4} \left(\frac{1}{r_1^*} - \frac{1}{r^*} \right) \left(\frac{1}{\epsilon_{\rm op}} - \frac{1}{\epsilon} \right)$$
(17)

Here, ΔZ is the number of electrons transferred, r_1^* is the radius of each reactant in the transition state, r^* is the center-to-center distance in the transition state, ϵ_{op} is the square of the refractive index of the solvent, and ϵ is the solvent's dielectric constant. Equation 17 has been found to be an effective description for many self-exchange reactions of coordination complexes.⁴² It is not a priori obvious that it should be equally effective for self-exchange reactions of triatomic redox couples; the high charge/radius ratio for a species such as ClO₂⁻, its nonspherical geometry, and its small size (comparable to the solvent molecule size) render eq 17 particularly dubious. Practically, to calculate ΔG_0^* using eq 17 is error prone for small molecules because errors in r_1^* and r^* are magnified by appearing in the denominators.

The classical model for ΔG_i^* is frequently written as

$$\Delta G_{i}^{*} = \frac{nf_{i}f_{2}(r_{1} - r_{2})^{2}}{2(f_{1} + f_{2})}$$
(18)

with *n* as the number of ligands, f_1 and f_2 as the bond stretching force constants for the two oxidation states, and r_1 and r_2 as the bond lengths in the two oxidation states.⁴⁴ Equation 18 is derived

^{(35) (}a) Mehrotra, R. N.; Wilkins, R. G. Inorg. Chem. 1980, 19, 2177.
(b) Scaife, C. W. J.; Wilkins, R. G. Ibid. 1980, 19, 3245.
(36) Mayhew, S. G. Eur. J. Biochem. 1978, 85, 535.
(37) NBS Tech. Note (U.S.) 1968, 270-3.
(38) Lambeth, D. O.; Palmer, G. J. Biol. Chem. 1973, 248, 6095.

⁽³⁹⁾ Swallow, A. J. Prog. React. Kinet. 1978, 9, 195.

^{(40) (}a) Henglein, A. Radiat. Phys. Chem. 1980, 15, 151. (b) Berdnikov, V. M. Russ J. Phys. Chem. 1975, 49, 1771. (c) Papaconstantinou, E. Anal. Chem. 1975, 47, 1592.

^{(41) (}a) Sullivan, J. C.; Thompson, R. C. Inorg. Chem. 1979, 18, 2375.
(b) Field, R. J.; Raghavan, N. V.; Brummer, J. G. J. Phys. Chem. 1982, 86, 2443.

⁽⁴²⁾ Brown, G. M.; Sutin, N. J. Am. Chem. Soc. 1979, 101, 883.
(43) Taube, H. In "Bioinorganic Chemistry-II"; Raymond, K. N., Ed.; American Chemical Society: Washington, D.C. 1977; p 127.
(44) Reynolds, W. L.; Lumry, R. W. "Mechanisms of Electron Transfer";

Ronald Press: New York, 1966; p 124.

Table V. Molecular Parameters for Classical Inner-Sphere Calculation

species	↓ , deg	r _{m-o} , Â	<i>К</i> , mdyn А ⁻¹	<i>H</i> , mdyn Å ⁻¹
ClO ₂	117.5 ^a	1.47ª	6.815 ^b	0.618 ^b
Cl0,-	111 ^a	1.57ª	4.25°	0.55 ^c
NO,	134 ^a	1.197 ^a	8.36^{d}	1.59 ^d
NO,	115 ^a	1.24^{a}	7.50 ^e	1.67 ^e
so,	119.5 ^a	1.43 ^a	9.97 '	0.81
SO ₂ -	110 ± 5 ^g	~1.51 ^a	6.36 ^h	1.78 ^h

^a Reference 46. ^b Reference 47. ^c Reference 48. ^d Calculated from frequencies in ref 49 using the simple valence force field of ref 45, p 169. ^e Reference 50. ^f Reference 45, p 170. ^g References 51 and 52. ^h Reference 52.

for reactions of octahedral molecules under the assumption that the symmetrical breathing mode carries the reaction. Clearly, this is not appropriate for a bent triatomic molecule, and we are unaware of a published solution to this problem. An explicit solution can be derived as follows. The potential energy of a bent triatomic molecule is given by a simple valence force field⁴⁵

$$V = \frac{1}{2}K((\Delta r_1)^2 + (\Delta r_2)^2) + \frac{1}{2}H(r^0 \Delta \alpha)^2$$
(19)

K is the stretching force constant, Δr_1 and Δr_2 are the displacements of the two bond lengths from the equilibrium lengths, His the bending force constant, r^0 is the equilibrium bond length, and $\Delta \alpha$ is the displacement (in radians) of the bond angle from equilibrium.

For simplicity it is assumed that the transition state is symmetrical, and that in it the bond lengths and bond angles are equal. Under these constraints, the potential for the pair of reactants is

$$V_{\text{tot}} = K_0 (r' - r_0^0)^2 + \frac{1}{2} H_0 (r_0^0 (\alpha' - \alpha_0^0))^2 + K_- (r' - r_-^0)^2 + \frac{1}{2} H_- (r_-^0 (\alpha' - \alpha_-^0))^2$$
(20)

Terms superscripted with primes refer to parameters of the distorted molecules. Terms subscripted with 0 and - refer to the oxidized and reduced species, respectively. The actual transition state is chosen as the geometry under which eq 20 is minimized, and it is found by setting equal to zero the partial derivatives of eq 20 taken with respect to r and α . The inner-sphere barrier is then the difference in potential between the transition state and the ground state, and this is given by

$$\Delta G_{i}^{*} = \frac{(r_{-}^{0} - r_{0}^{0})^{2} K_{-} K_{0}}{K_{0} + K_{-}} + \frac{H_{-} H_{0} (r_{-}^{0})^{2} (r_{0}^{0})^{2} (\alpha_{-}^{0} - \alpha_{0}^{0})^{2}}{2 (H_{0} (r_{0}^{0})^{2} + H_{-} (r_{-}^{0})^{2})}$$
(21)

The inner-sphere reorganizational barrier is the sum of a bond-stretching term and a bond-bending term. The ClO₂/ClO₂⁻ and NO_2/NO_2^- redox couples are particularly amenable to analysis with eq 21 because all four force constants are known from vibrational spectroscopy studies and the bond lengths and angles are accurately known from X-ray crystallographic or gas-phase spectroscopic studies.

There is more difficulty in applying eq 21 to the $SO_2/SO_2^$ redox couple because the geometry of SO₂⁻ is uncertain. Its bond angle can be estimated from ESR and vibrational studies, but the error may be as great as 5°. The bond length has arbitrarily been selected as that found in $S_2O_4^{2-}$. These molecular parameters, measured and estimated, are presented in Table V. Table VI displays the results of the calculations.

Table VI. Marcus-Hush Self-Exchange Calculations

	ClO ₂ / ClO ₂	NO ₂ / NO ₂	SO ₂ / SO ₂ -
Δ4, deg	6.5	19	9.5.(5)
$\Delta r_{m-o}, A \Delta G_i^*, kJ$	0.10 17.5	0.04 45.3	0.08 15.0 (4.6)
$\Delta G_i^*, \lambda / \Delta G_i^*, r$	0.11	9.32	1.17 (0.94)
∆G*, kJ	50.2	74.7	48
ΔG_{0}^{*} , kJ r_{1}^{\pm} , A	32.7	29.4	33.0 (4.6)
	2.91	3.23	2.88(0.35) 1068^d
$v_{in,sym}, cm^{-1}$ $v_{ln,bend}, cm^{-1}$	867 ^b 423 ^b	1321° 789°	508 ^d
$\Delta G^*_{\text{in.cor}}, \text{kJ}$	13.36	34.3	14.4 (7.0)
$\Delta G^*_{\sigma, eor}, kJ$ $r^{\pm}_{1, eor}, A$	36.8	40.4	33.6 (7.0)
$r_{1,eor}$, A	2.58	2.35	2.83 (0.49)
l'n	5.3	79	2.8

^a Values in parentheses indicate estimate of uncertainty. Parameters subscripted cor have been corrected for nuclear tunneling. ^b References 48 and 53. ^c References 49 and 54. ^d References 52 and 55.

The difference in ΔG_i^* for the ClO₂/ClO₂⁻ and NO₂⁻/NO₂ couples is striking. The ratio $\Delta G_i^* \angle \Delta G_i^* r$ is the ratio of the two terms in eq 21; this ratio shows that the bending mode is dominant for the NO_2^{-}/NO_2 couple, while the stretching mode is dominant for the ClO_2/ClO_2^- couple. These observations stand in contrast to the situation for octahedral coordination complexes, where it is often sufficient to consider only one mode, the symmetric breathing mode.⁵⁶ Furthermore, the greater importance of the bending mode for the NO_2^{-}/NO_2 couple than the ClO_2/ClO_2^{-} couple may be traced both to the greater change in bond angle and to the larger bending force constants.

The calculated ΔG_i^* values are related to the self-exchange rates through eq 16. ΔG_0^* , the solvent reorganizational energy, can simply be obtained by subtraction. Since the molecular sizes are not very different for the ClO_2/ClO_2^- , NO_2/NO_2^- , and $SO_2/SO_2^$ couples, eq 17 would imply that ΔG_0^* should be similar for these three couples. This prediction is explored in Table VI, and fairly good agreement is shown. With the assumption that the two partners in the self-exchange reaction are just touching, eq 17, simplifies⁴⁴ in aqueous solution at 25 °C to

$$\Delta G_0^* = 95.0 (\Delta Z)^2 / r_1^* \tag{22}$$

Reactant radii in Table VI, calculated from eq 22 and the tabulated ΔG_0^* , are about 1.5 Å larger than one might have expected; it is difficult to understand why ClO_2/ClO_2 appears smaller than NO_2/NO_2^- . Nevertheless, the classical model does account for the gross difference in reactivity between the NO_2/NO_2^{-} and ClO_2/ClO_2^- couples. Also, the results for the SO_2/SO_2^- couple seem reasonable.

Nuclear Tunneling. Due to the wave mechanical nature of molecular vibrations, the classical treatment of the inner-sphere activation barrier is only an approximation. The conventional picture⁴⁴ of the transition state as the minimum on the intersection of reactant and product parabolic energy surfaces is expressed in eq 21. For a reactant pair of a given energy, quantum mechanics predicts that there is a finite probability that the pair will penetrate into the classically forbidden region. This means that in regions where the reactant and product energy surfaces are close, there is a significant probability that a reactant pair may find itself on the product energy surface, i.e., that reaction may occur, and this can happen even for reactant pairs having less energy than the transition state. This phenomenon is called nuclear tunneling.

⁽⁴⁵⁾ Herzberg, G. "Infrared and Raman Spectra"; Van Nostrand-Rein-

⁽⁴⁶⁾ Wells, A. F. "Structural Inorganic Chemistry", 4th ed.; Clarendon Press: Oxford, 1975; pp 340, 342, 580, 590, 657.
(47) Sawodny, W. Angew. Chem., Int. Ed. Engl. 1965, 5, 573.
(48) Tanguy, B.; Frit, B.; Turrell, G.; Hagenmuller, P. Compt. Rend. 1967, 364.

²⁶⁴c, 301.

⁽⁴⁹⁾ St. Louis, R. V.; Crawford, B. L., Jr. J. Chem. Phys. 1965, 42, 857. (50) Kato, R.; Rolfe, J. J. Chem. Phys. 1967, 47, 1901.

⁽⁵¹⁾ Reuveni, A.; Luz, Z.; Silver, B. L. J. Chem. Phys. 1970, 53, 4619.

 ⁽⁵²⁾ Milligan, D. E.; Jacox, M. E. J. Chem. Phys. 1971, 55, 1003.
 (53) Nielson, A. H.; Woltz, P. J. H. J. Chem. Phys. 1952, 20, 1878.
 (54) Weston, R. E., Jr.; Brodasky, T. F. J. Chem. Phys. 1957, 27, 683.

⁽⁵⁵⁾ Hastie, J. W.; Hauge, R. H.; Margrave, J. L. J. Inorg. Nucl. Chem. 1969, 31, 281.

⁽⁵⁶⁾ Newton, T. W. J. Chem. Educ. 1968, 45, 571.

There have recently been several studies of nuclear tunneling.^{57,58} The overall degree of nuclear tunneling is not easily experimentally accessible at room temperature, but it can be evaluated theoretically. In the high-temperature limit the problem becomes classical, and so a nuclear tunneling factor may be defined as Γ_n = $k(T)/k(T = \infty)$.⁵⁹ Calculations of the Fe²⁺/Fe³⁺ exchange have led to $\Gamma_n = 3.5$ at 300 K, while for Co²⁺/Co³⁺ a $\Gamma_n \sim 10$ was found. A simple expression due to Holstein⁶⁰ relates the classical activation barrier ΔG_i^* to the barrier corrected for nuclear tunneling $\Delta G_{i,tun}^{*}$ ⁵⁷

$$\Delta G^*_{i,\text{tun}} = \Delta G_i^* \left(\frac{4RT}{Nh\nu_{\text{in}}}\right) \tanh\left(\frac{Nh\nu_{\text{in}}}{4RT}\right) \qquad (23)$$

where v_{in} is the average vibrational frequency for the two oxidation states. Since two vibrational modes contribute to the activation barrier for triatomic molecules, eq 23 is applied as a correction to both terms in eq 21. Table VI shows the results of these corrections. In the case of the ClO_2/ClO_2^- exchange, the correction is substantial, while the correction for the NO_2/NO_2^- case is much greater. Since the correction is effectively a reduction of the inner-sphere barrier, the solvent reorganization barrier is correspondingly larger. Molecular radii calculated from eq 22, also listed in Table VI, are smaller than in the classical model,

(60) Holstein, T. Philos. Mag. 1978, 37, 49.

and are closer to expected radii. Note that r_1^* for the NO₂/NO₂⁻ couple is significantly less than r_1^* for the ClO_2/ClO_2^- couple in contrast with the classical result. This observation lends support to the semiclassical model. The nuclear tunneling correction is equivalent to $\Gamma = 79$ for the NO₂/NO₂⁻ system; nuclear tunneling can be much more important for reactions of bent triatomic molecules than for octahedral complexes because of the greater vibrational frequencies. A similar degree of nuclear tunneling has recently been calculated for the isomerization of 1,3-cyclobutadiene to 2,4-cyclobutadiene.61

Summary

The kinetics studies of outer-sphere electron-transfer reactions involving the ClO_2/ClO_2^- couple are consistent with the cross relationship for a series of reactions spanning 14 orders of magnitude in equilibrium constant and 7 orders of magnitude in self-exchange rate constants, and involving a diversity of coordination complexes. The classical model of vibrational activation has been found useful in rationalizing the effective self-exchange rate constants for the ClO_2^{-}/ClO_2 , NO_2^{-}/NO_2 , and SO_2^{-}/SO_2 redox couples. Corrections for nuclear tunneling are substantial and correlate the data even better.

Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this research. We are also pleased to acknowledge support from the Robert A. Welch Foundation and the Research Corporation. This material is based upon work supported by the National Science Foundation under Grant No. CHE-8215501. Professor T. J. Meyer is thanked for his encouragement in the analysis of nuclear tunneling effects.

Registry No. $[Co(terpy)_2]^{2+}$, 18308-16-2; $IrCl_6^{2-}$, 16918-91-5; $IrBr_6^{2-}$, 16919-98-5; ClO₂, 10049-04-4; ClO₂⁻, 14998-27-7.

CO Insertion into the Iron–Carbon σ Bond in Optically Active CpFe(CO)(L)R. Solvent Dependence and Acid Catalysis

Thomas C. Flood* and Kent D. Campbell

Contribution from the Department of Chemistry, University of Southern California, University Park, Los Angeles, California 90089-1062. Received September 6, 1983

Abstract: The insertion of CO into the iron-carbon bond in optically active organoiron complexes CpFe(CO)(PPh₃)Et (Cp = η^5 -C₃H₃) (1) and CpFe(CO)(mtpb)Et (mtpb = P(OCH₂)₃CMe) (3) in the presence of CO yields CpFe(CO)(PPh₃)COEt (2) and CpFe(CO)(mtpb)COEt (4), and in the presence of cyclohexyl isocyanide (chi) yields CpFe(chi)(PPh₃)COEt (5) and CpFe(chi)(mtpb)COEt (6), respectively. In nitroethane or nitromethane under CO pressure 2 and 4 are formed highly stereospecifically, and in MeCN with much reduced stereospecificity, but all with formal alkyl migration. In HMPA, Me₂SO, DMF, or propylene carbonate the optical purity is moderate to low, and the configuration corresponds to formal CO migration. Mixed-solvent studies, cyclic voltammetry, and UV-vis spectra suggest that a special charge- or electron-transfer mechanism in nitroalkane solvent is unlikely. Use of ¹³C-labeled CO results in the expected incorporation of label only in the terminal CO position of 2. Strong catalysis results from BF_3 - Et_2O addition, but with no change in stereochemistry. Insertion in the presence of chi yields 5 and 6 with formal alkyl migration in either nitroethane or HMPA (the configurational assignment of the latter is highly tentative) but with reduced % ee. Operation of the usual reversible first-order insertion followed by second-order ligand uptake in the presence of chi is confirmed by a kinetics study of 1 with chi in Me₂SO with $k_1 = 4.9 \times$ 10^{-4} s⁻¹, and $k_2/k_{-1} = 0.54$ L M⁻¹. No intermediates could be detected by IR or NMR in nucleophilic solvents. Possible mechanisms are discussed, including the likely presence of an $(\eta^2$ -acyl)iron intermediate in rapid equilibrium with an unsaturated $(\eta^1$ -acyl)iron species.

The path of the insertion of CO into the metal-carbon σ bond is well-known to proceed in most cases as shown in eq $1.^1$ The stereochemistry of this important reaction has been a subject of considerable interest and has been extensively reviewed.¹⁻³ While

^{(57) (}a) Siders, P.; Marcus, R. A. J. Am. Chem. Soc. 1981, 103, 741. (b) Newton, M. D. Int. J. Quantum Chem., Quantum Chem. Symp. 1980, 14, 363. (c) Buhks, E.; Bixon, M.; Jortner, J.; Navon, G. J. Phys. Chem. 1981, 85, 3759. (d) Chapters by N. Sutin and B. S. Brunschwig, M. D. Newton and N.S. Hush In "Mechanistic Aspects of Inorganic Reactions"; Rorabacher, D. B.; Endicott, J. F. Eds. American Chemical Society: Washington, D.C. 1982; A.C.S. Symp. Ser. No. 198. (58) (a) Weaver, M. J.; Li, T. T.-T. J. Phys. Chem. 1983, 87, 1153. (b)

Buhks, E.; Bixon, M.; Jortner, J. Ibid. 1981, 85, 3763.

⁽⁵⁹⁾ Brunschwig, B. S.; Logan, J.; Newton, M. D.; Sutin, N. J. Am. Chem. Soc. 1980. 102. 5798

⁽⁶¹⁾ Carpenter, B. K. J. Am. Chem. Soc. 1983, 105, 1700.